Acidic amino acid transport characteristics of a newly developed conditionally immortalized rat type 2 astrocyte cell line (TR-AST).
نویسندگان
چکیده
To characterize acidic amino acid transport in type 2 astrocytes, we established conditionally immortalized rat astrocyte cell lines (TR-AST) from newly developed transgenic rats harboring temperature-sensitive SV40 large T-antigen gene. TR-AST exhibited positive immunostaining for anti-GFAP antibody and A2B5 antibody, characteristics associated with type 2 astrocytes, and expressed glutamine synthetase. Acidic amino acid transporters, GLT-1 and system xc-, which consists of xCT and 4F2hc, were expressed in all TR-ASTs by RT-PCR. On the other hand, GLAST expression was found in TR-AST3 and 5. The characteristics of [3H]L-glutamic acid (L-Glu) uptake by TR-AST5 include an Na+-dependent and Na+-independent manner, concentration-dependence, and inhibition by L-aspartic acid (L-Asp) and D-aspartic acid (D-Asp). The corresponding Michaelis-Menten constants for the Na+-dependent and Na+-independent process were 36.3 microM and 155 microM, respectively. [3H]L-Asp and [3H]D-Asp uptake by TR-AST5 had an Na+-dependent and Na+-independent manner. This study demonstrated that GLT-1, system xc-, and GLAST were expressed in TR-AST, which has the characteristics of type 2 astrocytes and is able to transport acidic amino acids.
منابع مشابه
Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions.
Conditionally immortalized brain and retinal capillary endothelial and choroid plexus epithelial cell lines were established from a transgenic rat (Tg rat) and mouse (Tg mouse) harboring the temperature-sensitive simian virus 40 (ts SV 40) large T-antigen. These cell lines exhibit temperature-sensitive cell growth due to the expression of ts SV 40 large T-antigen. Mouse brain (TM-BBB) and rat b...
متن کاملL-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier.
PURPOSE L-type amino acid transporters (LATs) prefer branched-chain and aromatic amino acids, including neurotransmitter precursors. The objective of this study was to clarify the expression and function of LAT at the inner blood-retinal barrier (BRB). METHODS [3H]L-Leucine transport at the inner BRB was characterized by using in vivo integration plot analysis and a conditionally immortalized...
متن کاملHypertonicity enhances GABA uptake by cultured rat retinal capillary endothelial cells.
We have reported previously that taurine transporter (TauT) mediates γ-aminobutyric acid (GABA) as a substrate in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2 cells). This study investigates how TauT-mediated GABA transport is regulated in TR-iBRB2 cells under hypertonic conditions. [³H]GABA uptake by TR-iBRB2 cells exposed to 12 h- to 24 h-hypertonic cultu...
متن کاملAdvances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions.
The retinal capillary endothelial cells are connected to each other by tight junctions that play a key role in permeability as the inner blood-retinal barrier (inner BRB). Thus, understanding the inner BRB transport mechanism is an important step towards drug targeting of the retina. Nevertheless, inner BRB transport studies have been very limited in number since it is not easy to use the retin...
متن کاملGeneration of an immortalized astrocyte cell line from H-2Kb-tsA58 mice to study the role of astrocytes in brain metastasis.
Astrocytes play a critical role in maintaining cerebral homeostasis and their dysregulation is thought to contribute to the pathogenesis of several diseases, including brain cancer and metastasis. Similar to the human disease, we found that lung and melanoma metastases in the mouse brain are accompanied by a reactive gliosis. To begin to study the biology of astrocytes and examine how these cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell structure and function
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2001